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Plateau du Moulon, 91192 Gif-Sur-Yvette Cedex, France
2 Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA

In this paper, a new approach to model efficiently high-temperature superconductors, whose electrical behaviour is characterized
by a non-linear power law, in 3-D is investigated. The commonly used non-linear H-formulation will be discretized based on the
discontinuous galerkin method. This numerical approach will likely provide fast simulations through parallel computations. Its
application on simple examples, such as a superconducting cube subjected to an external magnetic field, will show robustness,
convergence and fast computations.
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I. INTRODUCTION

THE growing interest of high-temperature superconduc-

tivity applications, mostly involving machines operating

in alternating current [1]-[2], is synonymous with efficient

design thus a precise evaluation of AC losses. Numerous

difficulties associated with the highly non-linear behaviour

of high-temperature superconductors [3], complexities of both

the geometry and the magnetic field configuration led to the

ongoing development of 3D numerical tools.

However, developed numerical methods [4] mostly using

the finite element method are not optimized for the highly

scalable computing architecture available nowadays. Thus,

the discontinuous galerkin method geared towards parallel

computations cangenerate fast and efficient computations of

3D superconductivity problems. Successful implementations

of the method have been done to solve the formulation based

on the electric field E [5].

In this paper, the method will be implemented to solve

the commonly used H-formulation where H is the magnetic

field. The numerical approach will be thoroughly described

and applied to a simulation case involving a superconduct-

ing cube subjected to an external sinusoidal magnetic field.

Comparisons of computed AC losses with the finite element

software in GetDP will be done.

II. DISCRETE VARIATIONAL FORMULATION

A typical domain Ω generally consists of a superconducting

sub-domain Ωs and a non-superconducting sub-domain Ωr that

are non-overlapping. Its discretization as Ω =
⋃

K∈Th
K will

give Th the mesh with tetrahedral or hexahedral elements K .

The nodal discontinuous galerkin method will be used to

solve the H-formulation resulting from Maxwell equations, the

magnetic linear constitutive law and the non-linear electrical

power law characterizing the superconducting domain Ωs. uh

of the unknown magnetic field H. The approximated quantity

u
h of the unknown magnetic field H will be defined over each

finite element K . It will belong to the following finite element

space :

W
h =

{

w ∈ (L2(Ω))3 : w|K ∈ (Pm(K))3,K ∈ Th
}

(1)

Thus the discrete variational formulation will consist in finding

u
h ∈ W

h such that:

∑

K∈Th

∫

K

u
h
t ·ϕdK +

∑

K∈Th

∫

K

κ · curluh · curlϕdK + Ih = 0

, ∀ϕ ∈ W
h

(2)

with u
h
t = ∂uh/∂t, κ = ρ/µ0 and the interface term Ih =

−
∑

K∈Th

∫

∂K

((κ · curluh)×n) ·ϕdA where n is the interface

normal vector.

However, the continuity of the tangential components of

the magnetic field H has not been implemented yet. An

adapted interface term based on numerical flux expression,

which ensures convergence of the problem and includes a

constraint term associated with the continuity of the tangential

components of H, must be used in place of the interface term

Ih.

III. INTERFACE TERM BASED ON NUMERICAL FLUXES

The proposed interface term [6], based on the symmetric

interior penalty method and numerical fluxes, on each face f
belonging to two neighbouring elements K and K ′ or to the

boundary Γ, will be expressed as :

−
∑

f∈Γh

∫

f

[ϕ× n] · {{κ · curluh}}dA−
∑

f∈Γh

∫

f

[uh × n]·

{{κ · curlϕ}}dA+ Iph
(3)

with the penalty term Iph =
∑

f∈Γh

∫

f

a · [uh×n] · [ϕ×n]dA.



The quantities [uh×n] and {{uh×n}} denote the jump and

average of the tangential components of the field u
h across

each face f .

However, the interface term expression defined above must

be simplify in order to implement it numerically. Thus, the

expression will be rewritten in terms of fluxes projected on

the basis vector function ϕ.

The use of the mixed product invariance property will give

the interface term expression below where all the projections

on ϕ are made :

∑

f∈Γh

∫

f

[ϕ] · {{(κ · curluh)× n}}dA+
∑

f∈Γh
∫

f

[(κ · curluh)× n] · {{ϕ}}dA+ Iph

(4)

with the penalty term Iph = −
∑

f∈Γh

∫

f

a·[ϕ]·[n×u
h×n]dA.

the transformation of the curl− curl operator to a diver-

gence operator div will introduce the fluxes quantities. The

equivalence of both operators is derived below :

κ · curluh = (Fh
x , F

h
y , F

h
z ) (5)

and

F1 = (0, Fh
z ,−Fh

y ),F2 = (−Fh
z , 0, F

h
x ),F3 = (Fh

y ,−Fh
x , 0)

(6)

will give the following derivations







curl(κ · curluh) = (divF1, divF2, divF3)

(κ · curluh)× n = (F1 · n,F2 · n,F3 · n)

(7)

Vectors F1,F2 and F3 are fluxes quantities. the final

interface term, expressed as numerical fluxes, is the following:

∑

f∈Γh

3
∑

i=1

∫

f

[ϕi] · {{Fi · n}}dA+

∑

f∈Γh

3
∑

i=1

∫

f

[Fi · n] · {{ϕi}}dA+ Iph

(8)

IV. NUMERICAL TREATMENT OF THE NON-LINEARITIES

ARISING FROM THE POWER LAW

The non-linear resistivity of Ωs will be derived explicitly

or an implicitly.

In the explicit case, the resistivity ρl−1 , evaluated at

previous the time step tl−1
p of the problem resolution, will

be used as an input in the problem at following time step tlp.

In the implicit case, a Newton-Raphson algorithm will

ensure internally a good approximation of ρ at each time step

tlp of the problem resolution.

V. NUMERICAL RESULTS

A superconducting cube of 2mm side length, subjected to

an external magnetic field Ha = Hmsin(2πft)ey, will be

modeled using the numerical method presented above and the

finite element method implemented in GetDP and Comsol.

Comparisons of the computed AC losses, over a period, using

both methods will help us validate the new approach.

The superconducting behaviour of the cube is characterized

by a critical electric field Ec = 10−7V/mm, a critical current

density Jc = 100A/mm2 and a power law exponent n = 10.

The magnetic applied flux density amplitude is Bm = 0.1T
with a frequency f = 50Hz.

Fig. 1. Total AC losses of a superconducting cube subjected to an external
magnetic field computed over T with GetDP, Comsol and the discontinuous
galerkin method (DG) with the non-linear resistivity evaluated explicitly and
implicitely.

the overall computation time on a mesh of 15948 tetrahedra,

with a time step of 25 milliseconds, was 30 minutes for the

discontinuous galerkin method using 16 processors and about

2 hours for the finite element method.

Thus, computations using the discontinuous galerkin

method are potentially faster than the ones with the finite

element method. The reason is parallel computations which are

natural to the discontinuous galerkin method. They enable the

scaling of the problem resolution over numerous processors.
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